Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake.
نویسنده
چکیده
Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe(3+)-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases.
منابع مشابه
Mechanistic Insights into a Novel Exporter-Importer System of Mycobacterium tuberculosis Unravel Its Role in Trafficking of Iron
BACKGROUND Elucidation of the basic mechanistic and biochemical principles underlying siderophore mediated iron uptake in mycobacteria is crucial for targeting this principal survival strategy vis-à-vis virulence determinants of the pathogen. Although, an understanding of siderophore biosynthesis is known, the mechanism of their secretion and uptake still remains elusive. METHODOLOGY/PRINCIPA...
متن کاملComparative genomic insights into the biosynthesis and regulation of mycobacterial siderophores.
Iron is essential for nearly all biological events. Siderophores are indispensable for most organisms to obtain iron from iron-limiting milieus. This holds particularly true for pathogens such as the causative agent of tuberculosis - Mycobacterium tuberculosis. The categories of mycobacterial siderophores, their biosynthesis and regulation are summarized here. The siderophore biosynthesis and r...
متن کاملLipidomic Analysis Links Mycobactin Synthase K to Iron Uptake and Virulence in M. tuberculosis
The prolonged survival of Mycobacterium tuberculosis (M. tb) in the host fundamentally depends on scavenging essential nutrients from host sources. M. tb scavenges non-heme iron using mycobactin and carboxymycobactin siderophores, synthesized by mycobactin synthases (Mbt). Although a general mechanism for mycobactin biosynthesis has been proposed, the biological functions of individual mbt gene...
متن کاملRole of porins in iron uptake by Mycobacterium smegmatis.
Many bacteria rely on siderophores to extract iron from the environment. However, acquisition of iron-loaded siderophores is dependent on high-affinity uptake systems that are not produced under high-iron conditions. The fact that bacteria are able to maintain iron homeostasis in the absence of siderophores indicates that alternative iron acquisition systems exist. It has been speculated that s...
متن کاملSeparable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence.
Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems (T7SS), designated ESX-1-ESX-5, that are critical for growth and pathogenesis. The best characterized is ESX-1, which profoundly impacts host cell interactions. In contrast, the ESX-3 T7SS is implicated in metal homeostasis, but efforts to define its function have been limited by an inability to recover deletion mutants. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 198 18 شماره
صفحات -
تاریخ انتشار 2016